The FermiGrid High Availability System

Dan Yocum Fermilab February 21, 2008

Introduction

- What is FermiGrid
- Why Does FermiGrid Need to be Highly Available
- How We Made FermiGrid Highly Available
- Testing FermiGrid High Availability
- The Cost of Building FermiGrid High Availability
- Future Work for FermiGrid High Availability
- Conclusion

What is FermiGrid

- Virtual Organization Management Server (VOMS)
 - Attaches extended key attributes to x509 certificates
 - fermilab, dzero, sdss, des, gadu, nanohub, ilc, lqcd, i2u2, osg
- Sitewide Globus Gatekeeper
 - CMSWC1, CMSWC2, CMSWC3, CDFOSG1, CDFOSG2, CDFOSG3, CDFOSG4, D0CABOSG1, D0CABOSG2, GPGRID, et al.
- Grid User Management Server (GUMS)
 - Maps every user to a local UID
 - Compute and storage resources
 - Peak of 1.1M mappings per day
- Site AuthoriZation Server (SAZ)
 - Authorizes grid batch processing jobs
 - Peak of 300K authorizations per day

- 1 –User obtains x509 certificate (one time only –renew periodically)
- 2 –User registers cert with VO via VOMRS, requests group, subgroup, and role (one time only –can update)
- 3 -VOMRS syncs to VOMS (every 30 minutes)
- 4 –GUMS pulls DN+FQAN from VOMS (every 60 minutes)
- 5 -User obtains voms proxy certificate (when necessary)
- 6a -User submits job to FermiGrid gateway
- 7a -Gatekeeper maps DN+FQAN against GUMS
- 8 Gatekeeper authorizes user against SAZ
- 9 Gatekeeper forwards job to appropriate grid cluster alternative:
- 6b -accesses dCache via SRM
- 7b -dCache maps DN+FQAN against GUMS via gPlazma

Why does FermiGrid need to be Highly Available

- Without VOMS extended attributes VO members can't map to local UID
- All compute jobs on all worker nodes are mapped by GUMS
- All compute jobs on all worker nodes are authorized by SAZ
- All file access requests to CMS and public dCache systems are mapped by GUMS
- Average of 10,000 mappings per hour!
- These services are critical to data access and data analysis!

- Make services fault tolerant
 - Replicate data and services, add failover capabilities (aka active-passive)
 - Vulnerable to overloading, service time-outs
- Make services load balanced
 - Replicate data and services, add load balancer (aka active-active)
 - Solves the (N-1) system failure problem
 - Solves the overloaded system problem, scales linearly with number of systems

- More specifically
 - Multiple systems, currently 2 physical machines
 - Hardware details later...
 - Multiple Virtual Machines on each physical machine, currently 4 (tune in Feb 28, 2008)
 - Replicate data across systems
 - Shared-nothing: no shared FS, no FC, no NFS
 - Replicate services on multiple machines
 - Without modifying source code
 - Add HA abstraction layer
 - Single point of contact presented to clients
 - voms.fnal.gov, gums.fnal.gov, saz.fnal.gov, fg-mysql.fnal.gov
 - Multiple servers on the backend
 - fg5x1/fg6x1, fg5x2/fg6x2, fg5x3/fg6x3, fg5x4/fg6x4

- Currently 2 physical machines
 - Dell 2950
 - Dual core, dual CPU, 3GHz
 - 16GB RAM
 - Dual Gigabit ethernet NICs
 - 150GB RAID 1
 - Redundant Power Supplies
- Xen covered Feb 28 by Steve Timm
 - fermigrid5 hosts fg5x1, fg5x2, fg5x3, fg5x4
 - fermigrid6 hosts fg6x1, fg6x2, fg6x3, fg6x4

- MySQL Replication
 - Investigated several technologies
 - MySQL Cluster
 - drbd distributed remote block device
 - mysqlhotcopy
 - mysqldump + rsync
 - Multi-master replication (requires MySQL >v5.0.2)
 - Decided on Multi-master replication
 - Scales well to 10 systems
 - currently only using 2
 - Near real-time replication, 1.1ms for 1KB record
 - Database server outages handled correctly
 - · Logs replayed after server rejoins chain

- MySQL Replication, cont'd
 - Complete failure requires full copy (obviously)
 - >2 systems require special techniques to close the circular chain in the event of failure
- Service Replication
 - 2 VOMS "servers", one each on fg5x1 & fg6x1
 - Each machine serves 12 VOs
 - 2 GUMS servers, one each on fg5x2 & fg6x2
 - 2 SAZ servers, one each on fg5x3 & fg6x3
 - All services use replicated MySQL servers on fg5x4 and fg6x4
 - No source code modifications

- High Availability and Load Balancing
 - Investigated several technologies
 - Heartbeat (active-passive)
 - Round-robin DNS (not supported at Fermi, \$\$)
 - Linux Virtual Server (LVS)
 - Selected Linux Virtual Server
 - Piranha product from Red Hat
 - Use Direct Routing (LVS-DR) method
 - Listens on voms.fnal.gov, gums.fnal.gov, saz.fnal.gov, fg-mysql.fnal.gov
 - Re-directs connections based on IP+port to backend "real servers"
 - Uses weighted least connections (WLC) to schedule connection requests
 - Other algorithms available

- High Availability and Load Balancing, cont'd
 - In LVS-DR, real servers respond directly to client
 - LVS "pings" services for availability
 - Removes service from scheduling if unavailable
 - Adds service back in when available
 - LVS master server is fermigrid5
 - LVS backup server is fermigrid6
 - Active-passive configuration
 - Failover in 6 seconds
 - Active connections to backend servers are maintained
 - If a service or real server fails during an open connection, the connection is lost.

Note 1: All network connections are on the public network

Note 2: LVS directors displayed separately for convenience – they are the same in reality

Testing FermiGrid High Availability

- Each service tested for load, stability, fault tolerance before deploying in production
 - 25 clients
 - GUMS successfully mapped at 112Hz, 9.7M/day
 - System load 9.2, CPU 92%
 - SAZ successfully authorized at 12Hz (1.1M/day)
 - System load 12, CPU 100%
 - VOMS works
 - No stress testing performed only 1,800 requests/day
 - MySQL successfully queried at 125Hz (10.8M/day)
 - System load 0.2, CPU 10%
 - Each service performed without fault for many hours under these extreme loads

Testing FermiGrid High Availability

- Fault tolerance testing was successful
 - Simulated failures of VOMS, GUMS, and SAZ
 - Disabled network
 - New requests not routed to failed server
 - Re-enabled network
 - server added back to the pool for scheduling
 - Open connections during service failure are lost.
 - No cheap and easy way to migrate TCP syn/ack sequences to another real server.
 - Affected number of connections is very small (1-2)
 - Simulated failure of MySQL server
 - After re-enabling server, transaction logs replayed automatically
 - Simulated LVS failure
 - Hot standby LVS server successfully took over in 6 seconds
 - Open connections maintained across failover

The Cost of Building FermiGrid High Availabilty

- Hardware
 - 2 Dell 2950s \$18,975.00
- Software
 - Open Source Software \$0
- Manpower
 - Approximately 50% FTE

The Cost of Building FermiGrid High Availabilty

Timetable

- Equipment received on Jun 5, 2007
- OS install and Xen work started early Jul, 2007
- Load balancing work started on Aug 23, 2007
- MySQL replication completed Aug 24, 2007
- VOMS install completed Sep 27, 2007
- GUMS install completed Sept 28, 2007
- SAZ and LVS installs completed mid Oct, 2007
- All testing completed Nov 2, 2007
- All services placed into production Dec 3, 2007
- Documentation written in parallel with work performed

Future Work for FermiGrid High Availability

- Making the following services highly available are dependent on furlough schedules and available funds
 - Squid
 - Ganglia
 - syslog-ng
 - Myproxy
 - Condor
 - Globus gatekeeper

Conclusion

- FermiGrid is the site job submission portal
 - Provides authentication and authorizations for all compute jobs and dCache access
- FermiGrid must be available at all times
 - 5,000 50,000 "jobs" per hour depend on FermiGrid services being available
- MySQL multi-master replication and Linux Virtual Server technology provides a stable, fault tolerant and highly available system

Conclusion

- Testing we have performed shows FermiGrid HA system is stable and capable of providing 10x our current needs
 - Scaling up only requires more hardware
- Cost of LVS is much, much less than a Cisco Round-robin DNS blade.

More LVS details

- 3 modes of operation
 - Network address translation (NAT)
 - Real Servers live on a private LAN
 - All traffic flows through LVS director node bottleneck!
 - Tunneling using IP encapsulation
 - Real Servers live on any public network, LAN or WAN
 - Good for geographically separated Real Servers
 - Real Servers answer directly to client no bottleneck
 - Real Servers must be able to un-encapsulate IP packets
 - Direct Routing
 - Real Servers and Director must live on same physical subnet
 - Director re-writes MAC in address frame and transmits on LAN
 - Real Servers respond directly to client no bottleneck

- More LVS details
 - Director maintains a hash table of open connections
 - Hash table is mirrored to backup LVS director
 - For long lived, transactional, and SSL connections, use persistence
 - Solving the ARP problem
 - Option A: use Transparent Proxy on Real Servers
 - Virtual Service IP (VIP) is not actually running on Real Server
 - Configured using iptables
 - Option B: use a real IP on a hidden interface (lo:0)
 - Enable net.ipv4.conf.all.arp_ignore to not respond to arp requests on VIP interface

- Multi-homed SSL web servers on the same physical system
 - Can't use Transparent Proxy must use IP on hidden interface
 - For >1 web server with separate hostnames running on the same machine, apache must bind to the IP of the service running (i.e., Listen 1.2.3.4)
 - voms.opensciencegrid.org
 - voms.fnal.gov
 - Separate VirtualHost directives containing the correct x509 service certificate with the appropriate hostname in the CN must be specified for each IP apache listens on.

- Issues with multi-master MySQL replication
 - External data (i.e., on the filesystem) referenced within the MySQL database are not replicated
 - Use rsync
 - Replication across timezones, national languages, etc. can cause problems
 - All our servers are local
 - Auto incrementing column problem
 - Use auto_increment_increment (10)
 - Use auto_increment_offset (1,2,3,...)